Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
World J Gastroenterol ; 14(39): 5996-6003, 2008 Oct 21.
Article En | MEDLINE | ID: mdl-18932277

AIM: To investigate the effects of (dietary) glycine against oxidant-induced injury caused by bile duct ligation (BDL). METHODS: Either a diet containing 5% glycine or a standard diet was fed to male Sprague-Dawley (SD) rats. Three days later, BDL or sham-operation was performed. Rats were sacrificed 1 to 3 d after BDL. The influence of deoxycholic acid (DCA) in the presence or absence of glycine on liver cells was determined by measurement of calcium and chloride influx in cultivated Kupffer cells and lactate dehydrogenase (LDH) activity was determined in the supernatant of cultivated hepatocytes. RESULTS: Serum alanine transaminase levels increased to about 600 U/L 1 d after BDL. However, enzyme release was blunted by about two third in rats receiving glycine. Release of the alkaline phosphatase and aspartate aminotransferase was also blocked significantly in the group fed glycine. Focal necrosis was observed 2 d after BDL. Glycine partially blocked the histopathological changes. Incubation of Kupffer cells with DCA led to increased intracellular calcium that could be blocked by incubation with glycine. However, systemic blockage of Kupffer cells with gadolinium chloride had no effects on transaminase release. Incubation of isolated hepatocytes with DCA led to a significant release of LDH after 4 h. This release was largely blocked when incubation with glycine was performed. CONCLUSION: These data indicate that glycine significantly decreased liver injury, most likely by a direct effect on hepatocytes. Kupffer cells do not appear to play an important role in the pathological changes caused by cholestasis.


Cholestasis/complications , Cholestasis/etiology , Glycine Agents/therapeutic use , Glycine/therapeutic use , Liver Diseases/prevention & control , Alanine Transaminase/metabolism , Animals , Aspartate Aminotransferases/metabolism , Calcium/metabolism , Cells, Cultured , Chlorides/metabolism , Cholagogues and Choleretics/pharmacology , Deoxycholic Acid/pharmacology , Diet , Disease Models, Animal , Glycine/administration & dosage , Glycine Agents/administration & dosage , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Kupffer Cells/drug effects , Kupffer Cells/metabolism , Kupffer Cells/pathology , L-Lactate Dehydrogenase/metabolism , Ligation/adverse effects , Liver Diseases/etiology , Liver Diseases/metabolism , Male , Rats , Rats, Sprague-Dawley
2.
World J Gastroenterol ; 13(25): 3478-86, 2007 Jul 07.
Article En | MEDLINE | ID: mdl-17659695

AIM: To investigate the effects of heme oxygenase-1 (HO-1) against oxidant-induced injury caused by bile duct ligation (BDL). METHODS: Either cobalt protoporphyrin (CoPP), a HO-1 inducer, or saline were injected intraperitoneally in male SD-rats. Three days later, BDL or sham-operations were performed. Rats were sacrificed 3 wk after BDL and livers were harvested for histology. Fibrosis was evaluated by sirius red staining and image analysis. Alpha-smooth muscular actin, which indicates activation of stellate cells, was detected by immunohistochemical staining, and cytokine and collagen-Ialpha (Col-Ialpha) mRNA expression was detected using RNase protection assays. RESULTS: Serum alanine transaminase increased 8-fold above normal levels one day after BDL. Surprisingly, enzyme release was not reduced in rats receiving CoPP. Liver fibrosis was evaluated 3 wk after BDL and the sirius red-positive area was found to be increased to about 7.8%. However, in CoPP pretreated rats sirius red-positive areas were increased to about 11.7% after BDL. Collagen-Ialpha and TGF-beta mRNA increased significantly by BDL. Again, this effect was increased by HO-1 overexpression. CONCLUSION: Hepatic fibrosis due to BDL is not reduced by the HO-1 inducer CoPP. In contrast, HO-1 overexpression increases liver injury in rats under conditions of experimental chronic cholestasis.


Cholestasis/complications , Cholestasis/enzymology , Heme Oxygenase-1/physiology , Liver Cirrhosis/etiology , Actins/analysis , Alanine Transaminase/blood , Animals , Bile Ducts , Chronic Disease , Immunohistochemistry , Ligation , Liver/enzymology , Male , RNA, Messenger/analysis , Rats , Rats, Sprague-Dawley , Transforming Growth Factor beta1/genetics , Tumor Necrosis Factor-alpha/genetics
3.
Cryobiology ; 54(2): 164-72, 2007 Apr.
Article En | MEDLINE | ID: mdl-17303105

Kupffer cells (KC) are the resident macrophages of the liver and represent about 80% of the total fixed macrophage population. They are involved in disease states such as endotoxin shock, alcoholic liver diseases and other toxic-induced liver injury. They release physiologically active substances such as eicosanoids and inflammatory cytokines (IL-1, IL-6, TNFalpha), and produce free radical species. Thus, KC are attractive targets for anti-inflammatory therapies and potential candidates responsible for differences in inflammation in liver disease seen between different individuals. However, to perform parallel in vitro experiments with KC from different donors a suitable method for conservation of KC would be necessary. Therefore, the present study evaluated, whether rat and human KC can be frozen, stored and recovered without losing their functional integrity. Rat and human KC were isolated and either cultured under standard conditions (fresh KC) or cryopreserved in special freezing medium (cryopreserved KC). At least 24 h later, cryopreserved KC were thawed, brought into suspension and seeded in the same density as fresh cells for subsequent experiments. Viability of cultured KC was analyzed by trypan blue exclusion. LPS (or PBS as control) stimulation was performed at different time points and cytokine release was analyzed with IL-6 and TNFalpha ELISAs, respectively. Phagocytic capacity was investigated by using a specific phagocytosis assay and FACS analysis. The recovery rate after thawing was around 57% for rat and around 65% for human cryopreserved KC. The results indicate, that KC can successfully be cryopreserved with an adequate recovery rate of viable cells. The properties of fresh and frozen KC can also be compared after thawing. Freshly isolated and cryopreserved cultured KC showed near-normal morphology and did not differ in the cultivation profiles over a period of 72 h. One to three days after seeding, frozen rat or human KC also retained inducible functions such as the production of TNFalpha or IL-6 after LPS challenge. Finally, regardless if they were cryopreserved or not, no differences in the phagocytic activities of the cells were obtained. Taken together, it is concluded that cryopreservation of KC does not change the physiological characteristics of the cells in vitro. Therefore, the method used here for cryopreservation of especially human KC allows the accumulation of KC from several donors for parallel in vitro experiments.


Cryopreservation , Kupffer Cells , Animals , Cell Survival , Cytokines/metabolism , Humans , Kupffer Cells/metabolism , Kupffer Cells/physiology , Male , Microspheres , Phagocytosis/physiology , Rats , Rats, Sprague-Dawley
...